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Abstract

For a pair of reaction diffusion equations with one diffusion coefficicnt

very large, there is associated a reaction diffusion equation coupled with an

ordinary differential equation (the shadow system) with nonlocal effects which

has the property that it contains all of the essential dynamics of the original -

equations. . .
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1. Introduction

Many models of chemical, biological and ecological problems involve

systems of reaction-diffusions in a bounded domain fl with Neumann

bound , 'onditions. Of major concern is an understanding of the mechanism

for the creation of stable patterns; that is, stable solutions which are spatially

dependent (see, for example, Turing f1952], Nicolis and Prigogine [1973]). For

the understanding of how stable patterns occur, it is obviously of interest to

characterize those situations for which stable patterns do not exist and, even

more particularly, those systems for which the flow is essentially determined by

an ordinary differential equation. This situation was studied rather extensively

by Conway, Hoff and Smoller [1978] for the situation where the system of

partial differential equations had an invariant region and by Hale [19861 for

the general situation. Due to the generality of the methods in the latter work,

the theory applies equally as well to functional differential equations or delay

equations with diffusion. The basic result is that no patterns exist if the

diffusion coefficients are sufficiently large.

Once the results arc known to be valid for large diffusion coefficients,

the next step is to try to understand the occurence of qualitative changes in the

flow through bifurcations as the diffusion coefficients become smaller. If all

diffusion coefficients are allowed to be completely arbitrary, many complications

occur and it is therefore natural as a first step to allow some diffusion

coefficients to become small while others remain very large. For a system of

two equations with special types of nonlinearities that occur in biological and

ecological models, such a theoretical investigation has been made for the

bifurcation and stability of equilibrium solutions by Nishiura [19811 and

N+
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Nishiura and Fujii [1985]. With the aid of numerical methods, the bifurcation

of equilibria for the same system for arbitrary diffusions has been discussed by

Fujii, Mimura and Nishiura [1982].

In the work of Nishiura [1982] and Nishiura and Fujii [1985], if dId2

are the diffusion coefficients, an important role was played by a limiting

system called a "shadow" system which is obtained by letting d2 - * and

consists of a single reaction-diffusion equation with diffusion coefficient di

coupled with an ordinary differential equation. It was shown that the existence

and stability properties of equilibrium for the shadow system were reflected in

the original pair of reaction-diffusion equations for the diffusion coefficient

d 2  large. It is the purpose of this paper to carry this idea further by showing

that the existence of a compact attractor for the shadow system implies the

existence of a compact attractor for the original system if the diffusion

coefficient d2  is large.

Let us now be more precise in the statement of the results. Let fl be a

bounded domain in RN , with an smooth and consider the system of

reaction-diffusion equations

au/at = D1 Au + f(u,v)

8v/at - D2 Av + g(u,v) in (l

subject to Neumann boundary conditions

(1.2) au/an = 0 , av/an = 0 on &I

where u E R m , v E R n  are vectors, D1 - diag(d1 ,..,din)

D = diag(d 21 . ,d 2 ) where each dJ k > 0 , f : R m x R n 
-R

m

v e
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g : R' x R' - R' are C 2-functions.

Let X = L2(",Rm) , Y - L2( CRn) . Using the operator A =-, one

can define the usual fractional power spaces XI , ya . For convenience in

notation, let us assume that N 4 3 and choose 3 < a < 1 The lattcr

choice of a is made to ensure that Xa C WI. 2(fnRm) n L*(fR m)

ya C WI,2(CRn) L*(flRn) . For N - I , we can take a = t. One can

then show (see, for example, Henry [19801) that, for any (uovo) E Xa x Ya,

a > X , there is a unique solution (u(t,.,uoVo),v(t,.,uovo)) E X ( X YC' of (1.1),

(1.2) through (uo, vo) at t - 0 which is continuous in (t,uoV o) .

A set A C Xa x Ya is invariant under (1.1), (1.2) if

(u(t,-,A),v(t,-,A)) = A for t ) 0 . The set A is a compact attractor if it is

compact, invariant and there is a neighborhood U of A such that the L-

limit set of u is A . The a-limit set uKU) of U is defined as

J(U) = )l cI U (u(t,.,U),v(t,.,U))
T)O tOT

By the shadow system of (1.1), (1.2), we mean the system

au/at = DIAu + f(u,¢)
(1.3)

dt/dt = In1-1 fn g(u(,x), )dx in (I

with the boundary condition

(1.4) au/an - 0 on ail .

The concept of a compact attractor in Xa x R n for (1.3), (1.4) is defined in a

manner analogous to the one for (1.1), (1.2).

-.IP 
,
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If do > 0 is a given positive constant, we use the notation D1  d0 ln.

In general, we let N(6,A) be the -neighborhood of a set A of a Banach

space.

We will impose the following hypothesis:

(H) Suppose there is a compact set K C X" x R n and a constant So > 0

such that (1.3), (1.4) has a compact attractor AD C K

tw(N(6,A )) AD for every D1 ) dol

Theorem I. If (H) is satisfied, then there is a do such that, if D2 ' dln,

then there is a compact attractor A D  C Xa x Ya for (1.1), (1.2) and, for

e > 0 , there is an 7 > 0 such that ADID 2 C N(E,ADX {0)) if D 2 ) ?1 nl

where {0) in AD x (0) means (0) C Y' with ya = R' x Y'

The last statement of the theorem asserts that the attractor ADID2

cannot be much larger than AD x (0) if D2  is large. On the other hand,

it could be smaller if we make no further hypotheses about the flow on AD1

of (1.3), (1.4).

In Section 2, we prove Theorem 1. The proof follows some of the ideas

in Hale [1986] except that a new argument must replace the use of Lyapunov

functions to obtain a priori bounds of the solutions of the full system. These

functions seem to be of little use due to the fact that one cannot obtain

information about a perturbed partial differential equation using the derivative

of the Lyapunov function.

In Section 3, we discuss the difficulties involved in obtaining ADID2 as

a graph over (u,z)-space. Some restricted conditions for the existence of a

graph also are given.



Under the assumption that the shadow system has a compact attractor with

certain properties, Theorem I asserts the existence of a family of compact

attractor ADI t  for the full system which are upper semicontinuous at

d= It is natural to ask the opposite questions: suppose that the full

system has a compact attractor for each D2 ) dln . Does the shadow system2n2

have a compact attractor A. and is the set (AD,D ID2 ' d°1n,A** lower

semicontinuous at d2 = * Section 4 is devoted to a discussion of conditions

which ensure that this is the situation.

In Section 5, we discuss the relationship between the shadow system and

PDE's with nonlocal spatial effects and hereditary dependence.

Theorem 1 can be considered as a first attempt to understand the behavior

of the solutions of systems of reaction-diffusion equations. Further information

could be obtained in the following way. In Theorem 1, there is a restriction

that D 1 dm In any particular problem, one could first try to analyze the

shadow system for all D1 ) 0 and obtain a clear picture of the dynamics of

the attractor. Taking the limit as D1 -- 0 gives some information about the

types of singular solutions that can occur at D1 = 0 . Ideally, one would then

hope to obtain an attractor AD1,D for D2 ) d°l and all D1 > 0. This
1' 2

will involve a very difficult analysis of the existence and stability of large

amplitude singular solutions near D1 = 0 . These solutions will play an

important role in understanding the global flow for the original equations in

the region in (DrD2) --space where D2  is not very large. Such a program

has been partially carried out analytically and numerically for a system of two

equations modeling problems in ecology by several Japanese mathematicians (see

I

_,,
5%



the survey article of Nishiura, Fujii and Hosr(no 1198011 Thc'% h .-

detail the bifurcation curves in (D)1 D 2 )-spacc for , nc (,:-ic ar .. r I.

equilibrium solutions and have discussed the stability of thcse s',tut,,n,, I h C

results explain well the formation and coexistence of staHlc paItrn'. I

manner in which the equilibria are d namicall\ connected hr. n,' tC-,i

discussed and is certainly an important factor.

Various generalizations of Theorem I are possible For exar ,lc. dilI creU.!

boundary conditions may be allowed. Consider the equation 0 I tt, I-

boundary conditions

D 1au/an + El(x)u = 0
~(1.5)

D2av/an + E2(x)v = 0 in an

where E1 ,E 2 are diagonal matrices and let

(1.6) k2= - I- f E 2(x)dx
-an

The appropriate shadow system for the system (1.1), (1.5) \P-ith D2  large

is the system

a3u/ at = D1Au + f(u,z) in (I
(1.7)

dz/dt = t 2z + Ifl - f g(u,z)dx

with the boundary conditions

(1.8) D I u/an + E(x)u = 0 in an

Following essentially the same proof as below for Theorem I and the
D2 At ,y

estimates on e from Hale and Rocha [1987a,bl. one obtains (XEa
E E 2



I hroacrn .

C. ,r t ) I I A C , . A u

.u D & U f u .

Ui +t g(Ut. t nu
a. d 1t = [) L - glu 1. t in fl

A ith the b(,unda r\ cond iti,.sn I or 11 5) here the notation u Vt. designate

u;e. 8 = ut , 0' = N ttioex) , e E [-r,O . The functions ut,%t  arc

supposed t(-) belong to the spaces C(q-rOJX, . C(-r,0],YAa) . The shadow

s5 stem is

8u 8t = DIAu + f(ut.z t ) in 0

dz dt = 2 ( t) + 1Ifll-1 f g(u ,z )dx

i.e., a functional partial differential equation coupled with a functional ordinary

differential equation. We do not state the precise result on the existence of an

attractor for (1.9) which would be analogous to Theorem 2.
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2. PROOF OF THEOREM I

Let Z C Ya be the linear space of the constant functions,

=Z Y , v =z+ w where z EZ, wEy ,

(2.1) z= I f1- v(x)dx , f w(x)dx = 0

(1n
We can identify Z with R n  and therefore will consider z as an element

of Z as well as a vector in R n

If u(t, .) , v(t,-) are solutions of (1.1), (1.2) and v(t,.) = z(t) + w(t,-)

z(t) E Z , w(t,.) E Y , then

au/at = D1 Au + f(u,z+w)

(2.2) dz/dt = Inl -1 fn g(u,z+w)dx

aw/at = D2Aw + g(u,z+w) - fl-' f g(u,z+w)dx in (I
l

with

(2.3) au/an = 0 , aw/an = 0 in &a

We are going to consider this equation as a perturbation of the system

au/at = DIAu + f(u,z)

(2.4) dz/dt = In "1 f g(u,z)dx

aw/at = D 2Aw in f

with the boundary conditions (2.3). By hypothesis (H), (2.3), (2.4) has a compact

attractor ADI x (0)

1I

~ C . .., -,-., ' %* -*.-¢, ,,.- %., _R- - - ,,,- ,. * ..- ,, ' ?,s*),. . . ',. vL,' ,, .\, ,', '- ?f,'t,","e ,'d,:
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Let us rewrite (2.2) as

au/at - DiAu + f(u,z) + F(u,z,w)

(2.5) dz/dt fInj- fn g(u,z)dx + Z(u,z,w)

aw/at = D 2Aw + g(u,z) - 1fl 1 f g(u,z)dx + G(u,z,w)
fn

Then using the fact that a > ( and standard types of estimates (see, for

example, Hale [1986] or Hale and Rocha [1986a]), there is a constant kB such

that

26.IF(uzw)HL 2  Z(uzw), IG(u,z,w)l, (
(2.6)

Ilg(u,z) - Ilj-1 f g(u~z)dx I 2 4 (n l

for (u,z,w) e N(s,K x {0}) .

There are g > 0, k i > 0 , such that, for d2  d > 0 ,we have

j]eD2 Atwj y'i k1ec d / t Iw Y I , t ) 0

(2.7)

Ile D2 At w Ily± kle -djU ttaI WI L2  t ) 0

(see, for example, Hale [1986]).

If we now use the variation of constants formula on the equation for w

in (2.5), then, as long as (u(t),z(t),w(t)) C N(B,AD x (0)) , we can use the

relations (2.6), (2.7) to obtain

- ;- ' * *d y& ..--. p?. ' ~&
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Ijw(t)II~± 4 l-d j( ~j. + kjk6 ft (t-s)"'e-1d(t-s)ds

+ k1k6 ft (t-s)-ae-iLd(t-s) I1w(s)IIj~±ds
0 c

Choose 0 < 0 < it and let '1(t) =eadt I1w(t)IIy± , y(t) sup{'1(s), 0 4 s 4 t)

and

L = f S-Qe(O/;)sds
0

Then

'1(t) 4 k 1e-(iU0)dt1(O) + k1 k6e~dtL(jd)*-1 + kkL(&d)a-,y(t)

Now choose d so that

(2.8) e =I-k~k6L(ad)a
1 > 0

Then

Y(t) e 9-k 1e-(M -o)dtn(O) + e-'k 1kr eOdt L(JLd) '

Since '1(t) - eodt I1w(t)IIY.± I we have

(2.9) tjw(t)jjIj e1ke-uLdtlIw(o)llI_ + e-1k k L(gd)01-

Remember that (2.9) is valid for all t IE [0,T] if (u(t),z(t),w(t)) e-

N(6,AD x (0)) for t C [0,T]

If (u(t),z(t),w(t)) C- N(6,A D x (0)) for all t ?0 ,then inequality

(2.9) implies that
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II1'(t)IIyj F1 k 1 1fw(O)Iy + e-'kk6L(gidy~' t 0

(2.10)

Jim supt.. Hjw(t)II ( e-1 klk 8 L(ud)0' l

Therefore, w(t) can be made as small as desired by taking w(0) small and

d large and the lim sup of Iw(t)IIYL can be made small by making d

large.

Now let us obtain a priori bounds on u(t) , z(t) ; namely, the solutions

of

Bu/at = D1 Au + f(u,z) + F(u,z,w(t))

(2.11)

dz/dt = InK1 ' flg(u,z)dx + Z(u,z,w(t))

Choose constants c,fY , 0 < 27< < 6 , and let to(n) be the constant

such that the solution (u(t),z(t)) of (1.3) (1.4) with (u(0),z(O)) E N(B,A D)

satisfies (u(t),z(t)) e N(n,AD ) for t ) t o (n) , which is ensured to exist by

(H) . There is a constant ? such that, if IIF(uz.w)II L2  IZ(uzw)I < T

then any solution (u(t),z(t)) of (2.11) with (u(0),z(0)) c N(e,AD ) must stay

in N(BAl) for 0 4 t ( to (n) and satisfy (U(to(?7),Z(to(n))) c N(2n,AD).

Therefore, the same will be true for t 6 [to(n),2to(7)] , etc., and the solution

will remain in N(S,ADd) for t ) 0 . To obtain this estimate on F, Z,

IIw( ly so salnd 0  o
choose so small and d large that the right-hand side of the

first inequality in (2.10) is less than T'/k 6 .

Therefore, we have shown that there is a neighborhood U of AD x (0)

such that the solution (u(t),z(t),w(t)) of (2.2), (2.3) with initial data in U

%

|%
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and do  sufficiently large stays in N(B,A 1 x (0)) for t ) 0 . Thus, w(U)

is compact (see Henry [1980], Th. 3.3.6) and u(U) -AD=ID is a compact

attractor for all DI ) doIm and D2 ) dI

From the second inequality in (2.10), we can use an argument similar to the

one above to show that, for any sequence ni- 0 as j - , there is a

sequence do a2j asj- suhta

AD 1 D2 = (U) C N(?jAD x (0))

This implies the last assertion in Theorem I and the proof is complete.

N'

2,N'. 2 ,_,.,,:': ,.,.:': .2., ' " ' - , .  €2""...- . . '., -2 -,..:".2"2' ''' r.':'...,.., .2'[¢:, ' €: '
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3. THE ATTRACTOR AS A GRAPH

In this section, we discuss the possibility of the attractor ADI D2

being a graph over (u,z)-space. It is tempting to try to obtain such a graph by

applying the method of center manifolds to the system (2.2), (2.3) attempting to

obtain an invariant manifold which contains A I D 2 and is defined by

w = h(u,z) for some function h . After appropriately re-defining f , g

outside a neighborhood of the attractor so that they are bounded functions, such

an integral manifold would be required to satisfy the equations

au/at = D 1 Au + f(u,z+h(uj))

dz/dt = If"i-" f g(u,z+h(u,t))dx

na

u(O) = u0 , z(O) = zo

def 0 e-D2 AS
h(uo,z O) = (Th)(uo,zO) f 2 g(u(s),z(s)+h(u(s),z(s))) -

IVl-1 g (u(sx),z(s),h(u(s,x),z(s)) ) dxIds

To define this integral operator Th requires that u(s) must be defined on

(-,0] . One does not expect such solutions to exist for all values of uo

because of the smoothing properties of the solutions of au/at = D1Au .

These remarks seem to indicate that the standard method of center

manifolds will not apply to this problem.

Another approach that could make use of center manifold techniques is to

assume that AD for the extended f , g lies in a finite dimensional

invariant subspace which is normally hyperbolic for the shadow system. This
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can be accomplished, for example, if the spectrum of the Laplacian has

sufficiently large gaps. The proof can be supplied as in Mallet-Paret and Sell

[1986] for inertial manifolds or one can use the integral equation approach for

center manifolds in a form similar to that mentioned above. This implies, for

example, that the attractor will be a graph if the equation for u acts in

only one space variable.

V ~ .,4.C%.~ *% %. ~ ''.*. ~ ' V. ./ "' p ~ l

*44I
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4. LOWER SEMICONTINUITY OF THE ATTRACTORS

In this section, we assume the existence of compact attractors AD 1 D2  for

(1.1), (1.2) satisfying certain properties and conclude that the shadow system

(1.3), (1.4) has a compact attractor.

Lemma I. For E > 0 T > 0 , there exists d 2 = d 2(E,T) such that. if

(u(t),v(t) ) and (w(t), t(t)) are solutions of (1.1), (1.2) and (1.3). (1.4) respectively

with u(0) = w(0) . V(0) = 1(0) then. for D2 ) d 2(e,T)J,, the following are

valid:

sup Iu(t) -w(t)lxa < sup IV(t) - vt) < E
t(0,T] t([0,T]

sup Iv(t) - V(t)I Y <
t440,r]

where V(t) = 101- 1 f v(t)dx

Proof. By gE( (.,(.)) , e X , P E Ya , we denote the projection of the

function g(( .),0()) onto YJ along Z . Let us first give an estimate on

v_(t) = v(t) - V(t) , which satisfied the following

V.(t) - eD2A(t5) gi(u(s),V(s) + vL(s) ) ds
0

By using the estimates in (2.7), one obtains
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t

(4.1)
4 k1Mr(1-c)/(dz) 1'  for t E [0,T]

where M - sup(jLgj(u(s),v(s))jyO 1 0 4 s ( T).

Now rewrite the equations for (u,V) as follows:

I 8u/at = D1 Au + f(u,V) + R1 (vj)

dV/dt = jnI' fn g(u(y,t),V(t))dy + R 2(V.)

where R(vj) - f(uV+v.) - f(u,V)

and
R 2 (V') " lV' f [g (u(y,t),V(t)+ v.L(Y,t)) - g (u(y,t),V(t))] dy

By using the estimate in (4.]), one can find a constant K > 0 such that

sup 1Ri(v)I lo ( Kd "1 
, i 1,2

tq0,T] 1,

These estimates prove the existence of d2  d2(E,T) in the lemma.

Let us denote by TD 1 D2 (t) the semiflow on X a x YO generated by

(1.1), (1.2) and make the following hypotheses:

'4-1) TDID (t) has a compact attractor AD,1 in Xa x Ya

(H-2) For any bounded set B C Xa x Ya and any c > 0 , there is a

to - to(e,B) such that:

TDD(t)B C N (c,ADID] , Vt . to

(H-3) Cl U AD D2  is compact for some do > 0
D2 )dO In 1

2 dO D
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Theorem 3. Under the hypotheses (H-1)-(H-3), the shadow system (1.3), (1.4) has a

cornpact attractor AD and, moreover,

AD = o Cl U ADAD1,0 r)dO D2 )61 D'D

Proof. nl CI u ADVD2 is non-empty and compact because of (H-I) and (H-3).
S)dO D2 )6 1'

Let us denote by TDIO (t) the semniflow on X x Z generated by the shadow

system (1.3), (1.4).

Firstly, we show that TDIO (t) has a compact attractor ADIO and that

ADIC Cr' Cl U ADVD holds. For any bounded set B C X x Z, the
D1 0  dO D )Si ~ 2

2 2 n

set ITDID2 (t)BIt ) 0) is bounded by virtue of (H-i). We therefore repeat the

*arguments in the proof of Lemma 1 uniformly in the initial data (0I) c- B

namely, for any c > 0 and T > 0 , there exists a constant so= 60 (E,T,B)

such that

for t E [0,T) , D2) 60(T,C,B)ln . By the hypothesis (H-2), there is a to(E,B)

such that TDVD 2(t)B C N L,ADD2) for t ) to(c,B) D 2 ) d 021 . For any

increasing sequence (T.)OD , Tjt- jt-, let jo = j(E) be the least index

j for which T.j > t0 (c,B) and

N cE, () Cl U 61ADD] Cl U fADD2ID 2 6l ,T, l
'- ?d0  D )Bi 1 12 2 n

hold.



For this choice of j0 (e) , we have:

(1) dist (TDD 2(T, ())B,TD,, ( To(EpB) < e for D2 6o(fjj(E),B)Ifl

(2) TDD(j(E))B C N(e,A~ D ) d0I,

(3) N(E, r) Cl U ADID2 ) D Cl U {ADIDID, 2 k5(jjw ~'

From these three properties, it follows that

TD (Tj(())B C N(3E, r) CL u AD D )
s~do D 1'S 2

Let =j 0 (l/k) , k ,) I . Hence, the limit

limit TD 1,0(T ik)B C nl Cl U AD 'D 2 exists.
1,- 0 k WOd D2 )Bx '22 n

Since the sequence (Tjco , Tjt , jt- is arbitrary, we have thus

established

(4.2) WTD I (B) = n Cl U TD'C (s) B c n Cl u AD'D2
1, 00 SBtd 0  D )5I

*This, in particular, implies that TD *'(t) is bounded dissipative and

(TDI (t)B Ijt ) 0) is bounded for B C X' x Z bounded. One can also show

that TD I (t) is compact for t > 0 (see Hale [19851 for detail). These three

properties are sufficient to guarantee that TD ,,(t) has a compact attractor

AD.. (see Hale [1985]). From (4.2), it follows that

AD mC o CJ U ADI'
O'Bdo D2 )6BJ

* * - ~ -* ~ ' ~ 2
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In order to prove AD ,** D r Cl U ADPD it suffices to note that
S~dO D )5 1 2

2 2 n
Lemma I actually shows that the semiflow TD ,D2(t) is continuous in D2 at

infinity. This fact together with the existence of ADI,** and (H-3) is sufficient

to ensure that AD1,D2 is upper-semicontinuous in D2 at infinity, namely,

AD AD D 0 Cl U ADID 2

This completes the proof of Theorem 3.

4..
"4., 
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5. SHADOW SYSTEMS AND FUNCTIONAL DEPENDENCE

For a system of two reaction-diffusion equations with one diffusion

coefficient large relative to the other, we have seen that the flow on the

attractor can be reduced to the discussion of the shadow svstem consisting of a

PDE coupled with an ODE with nonlocal terms. In some situations, the flow of

the shadow system can be reduced to the discussion of a scalar PDE with

nonlocal effects in the spatial variables. In this section, we give some

illustrations of this fact.

Suppose the shadow system is given by

Lit = dAu + f(u,j)
(5.1)

t- I=~ ' f g(u(.,x),t)dx in fl

with the boundary condition

(5.2) au/an = 0 in Ifl

Suppose that (5.1), (5.2) has a compact attractor Ad and that

(5.3) g(u,v) = -X[v-h(u)J

where X > 0 is a positive constant and h(u) is a C2-function.

If (u(t) (t)) E Ad for t E R , then, in particular, k(t) is a solution

of the equation

t " -wt) + Xil1-' f h(u(t,x))dx

which is bounded on R . Therefore, t(t) is uniquely defined by the formula

[%
............................... .*..~**.p* -... ... .~J... .".

..%" ',°.' . "". . . .*.%/." .-'
" "

" ' .. "". s " . ."," " , .' " . ."," " .-- ,," " .." "
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t

(5.4) X(t) " e- (t-s) H[u](s)ds

where

(5.5) H[u](t) = VjV IJ h(u(t,x))dx

This implies that u(t) is a solution of the equation

r 0
(5.6) ut = d Au + f u(t,) f etSH[u)(t+s)ds in 0

with the boundary condition (5.2). This is a retarded PDE with nonlocal effects

in the spatial terms.

In summary, if g satisfied (5.3), then the flow on the attractor for the

shadow system (5.1), (5.2) is equivalent to discussing the flow on the attractor

for (5.6), (5.2) making use of (5.4). Of course, we must make cert,;i that (5.6),

(5.2) defines a semigroup in some appropriate space.

To obtain a solution of (5.6), one must specify a function y:(--,O] - X'

and then attempt to use (5.6) to extend tp to a function u(t,Wf) defined on

( w,) with u(t) = y(t) for t ( 0 . There are several natural spaces for

the (f 's; for example, for any 0 < - < ), , the space

C7  = (y E C((-,0),X0'); g( )e 0  
--* limit as 6 - -C}

with the sup norm C , or the space

L TYp ((-®,0),Xlx )  X01

L.p((-,0 )= :(-,0)-- Xa;y measurable and

0
f eOPe jo(e) IPd6 <

, ; ...' .' _ . ' .' . , ' ." , .. " , ' _ , " , , . _ ." . ' _ . _ ." .* ... -, ,, .-_ . ., -, .. .L . ., .- . , . n ..,, ..n - ,, , , , , ., ' ,; , .¢,- .C, % -. . .
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with the norm

[ ow=Tuo IlYP IUol + f " e-/Pe lj (e)j~de 1/

With either of these spaces, one can follow the usual procedures to obtain

the local existence and uniqueness of solutions of the initial value problem for

(5.6), (5.2).

Let ui restrict our discussion to C . If Ad C X' x R is a compact

attractor for (5.1), (5.2), then (5.6), (5.2) has a compact attractor Ad C C and

(u(t),k(t)) E Ad if and only if t(t) is given by (5.4) and T(t)u E Ad where

"T(t)u(e) = u(t+e) , - e < 4 0

It is clear that properties of the solutions of equations of the form (5.6)

need to be investigated in more detail. In this paper, we are content with a

few remarks.

If we let fl = (0, n) and let uo be the equilibrium point of (5.6), then

the eigenvalues of the linear variational equation about uo are

Xn  -n 2d, n ) 1

(5.7)

0o  a- ¢ + 13( 1+ XO) 1

with corresponding eigenfunctions e n cos nx , 6 E (--90] , x E [0,i1 where

a = fu(uo,to) , 13 = f,(uo,to) , to = h(uo) . Now suppose that

(5.8) 0 < cc < 1 , < 0 + < 0.

These inequalities are the usual ones corresponding to the Turing

conditions for the destablization of equilibria in the original pair of reaction

diffusion equations (see, for example, Nishiura [1982]).

~~~~~~~~%0 ve.~~%~*i VS (
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If (5.7) is satisfied, then Re),o < 0 . If we consider d as a parameter,

then each )n < 0 if n is large. If we decrease d , then there is a

bifurcation at d = o and another equilibrium will arise which is spatially

nonhomogeneous. This seems to be typical of the Turing mechanism. The

nonlocal spatial effects make the eigenfunction corresponding to the dominant

eigenvalue spatially dependent.

Another interesting equation is obtained by taking a limiting situation in

(5.4). If ) -- , then the equation (5.6) should have the dynamics given by

the simpler equation

(5.9) ut =-dAu + f u, I J,"  h(u(t,x)) dx]

with the boundary condition (5.2). Equations of this type have been

encountered by Chafee [1981], Levin and Segal [1982], [19851, where they also

.observed that stable patterns could be generated by nonlocal spatial effects.

4',

-4%
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